Accurate analytic approximations to eigenvalues anharmonic potentials x2+λx8

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arbitrarily accurate eigenvalues for one-dimensional polynomial potentials

We show that the Riccati form of the one-dimensional Schrödinger equation can be reformulated in terms of two linear equations depending on an arbitrary function G. When G and the potential (as for anharmonic oscillators) are polynomials the solutions of these two equations are entire functions (L and K) and the zeros of K are identical to those of the wavefunction. Requiring such a zero at a l...

متن کامل

Analytic Approximations to Galaxy Clustering

We discuss some recent progress in constructing analytic approximations to the galaxy clustering. We show that successful models can be constructed for the clustering of both dark matter and dark matter haloes. Our understanding of galaxy clustering and galaxy biasing can be greatly enhanced by these models.

متن کامل

Study of Anharmonic Singular Potentials

Nasser Saad † , Richard L. Hall † , and Qutaibeh D. Katatbeh ‡ † Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3. † Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec, Canada H3G 1M8. ‡ Department of Mathematics and Statistics, Faculty of Scie...

متن کامل

Nonlinear eigenvalues and analytic hypoellipticity

Motivated by the problem of analytic hypoellipticity, we show that a special family of compact non selfadjoint operators has a non zero eigenvalue. We recover old results obtained by ordinary differential equations techniques and show how it can be applied to the higher dimensional case. This gives in particular a new class of hypoelliptic, but not analytic hypoelliptic operators.

متن کامل

Accurate eigenvalues of bounded oscillators

We calculate accurate eigenvalues of a bounded oscillator by means of the Riccati–Padé method that is based on a rational approximation to a regularized logarithmic derivative of the wavefunction. Sequences of roots of Hankel determinants approach the model eigenvalues from below with remarkable convergence rate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Physics

سال: 2020

ISSN: 2211-3797

DOI: 10.1016/j.rinp.2020.102986